
 Splines & Quaternions (splines.txt)

 by
 Jochen Wilhelmy
 a.k.a.
 digisnap
 digisnap@cs.tu-berlin.de
 06.08.1997

Introduction
============
This text describes the spline and quaternion mathematics which I used in
the "Spotlight" 64Kb intro. It is compatible with Autodesk 3D Studio 4.0.
The first section covers all one and three dimensional tracks. The second
section describes the rotation track which has to be handled extra. All
tracks are described with the parameters tension, bias and continuity.
The text should guide you how to code this stuff. If you want more
background knowledge you should look into this litarature:

[1] Computer Graphics Principles and Practice
 by Foley, van Dam, Feiner and Hughes
 ISBN 0-201-84840-6

[2] Shoemake, Ken, "Animating Rotation with Quaternion Curves"
 Proceedings of SIGGRAPH '85 (San Francisco, California, July 22-26,
1985)
 In Computer Graphics, 19(3), July 1985, ACM SIGGRAPH, New York
 (Pages 245-254)

Thanks to Admiral/Elyssis for "beta-testing" this text.

Tracks
======
A track consists of several keys specifying a certain property at a certain
time. The property can be position, rotation, size and other things. A key
contains a time (frame number), some parameters like tension, continuity
and bias and a data field describing the property for the given time. In
this section the data is a vector, which is one dimensional for tracks like
roll track and three dimensional for the position and scale track. The keys
will be called k, the vectors representing points will be called p. The
point of the n'th key is therefore pn, the next one p(n+1).

You best understand the following explanations if you think of a two
dimensional position track, because you can illustrate it with a pencil and
a ruler on paper.

Since the time is continuous, you have to interpolate the gaps between the
points. Draw some points on a paper. The simplest way to interpolate them
is
to take a ruler and draw lines between the points. The formula would be

Q(t) = P1*(t) + P2*(1-t).

Assign P1 and P2 to two consecutive points in your track (pn and p(n+1)). t
is a local time parameter running from 0.0 to 1.0. If T is the global time
(frame number), then t = (T - T1)/(T2 - T1), where T1 is the frame number
of the starting point and T2 is the frame number of the end point. T runs
from T1 to T2. When it reaches T2, the end point becomes your new starting
point and the next point in the track your new end point. This is
equivalent to moving the ruler on the paper to the next two points. This
way of interpolating does not give smooth paths, since the tangent vector
of the path (the moving direction) changes suddenly when you pass a joint
point. That's why splines are used instead.

The Hermite Spline
==================
The Hermite spline is a curve between two points (P1 and P2) with given
tangent vectors R1 and R2 at these points. If your time parameter t is
running again from 0.0 to 1.0, you calculate a point on the spline like
this:

Q(t) = P1*(2t^3-3t^2+1) + R1*(t^3-2t^2+t) + P2*(-2t^3+3t^2) + R2*(t^3-t^2).

To use this formula to interpolate your track, just look at four
consecutive points in your track. Assign the second point to P1, the third
to P2. The first and the last of the four points are used to calculate the
tangent vectors R1 and R2. The parameters tension, bias and continuity
control the direction and length of R1 and R2. But at first we neglect
these parameters and take a position in the middle of the track, because at
the start and end point of the track there is one point missing to
calculate R1 and R2. pn is the point in the track whose tangent vector tn
you want to find. Obviously you have to apply the following formula twice,
once for P1 to find R1 and once for P2 to find R2:

tn = (p(n+1) - p(n-1))*0.5.

Parameters
==========
As I mentioned before, the tangent vector tn of a point pn depends not only
on the previous and next point, but also on the parameters which belong to
the key kn, which contains pn. To simplify the formulas I introduce three
vectors:

g1 = pn - p(n-1),
g2 = p(n+1) - pn,
g3 = g2 - g1.

Then a similar formula for tn is

tn = g1 + g3*0.5.

Draw the points p(n-1), pn and p(n+1) on a paper in a triangular form.

Attach straight line g1 at pn, that it points away from p(n-1). Then draw a
straight line between the end point of g1 and p(n+1) to find g3 and draw a
straight line between pn and the middle of g3 to find tn.

This is the drawing. Points of the track are marked with *, auxiliary
points with o. Look at it in 50 lines text mode.

 o
 /|
 g1/ |
 / |g3
 / |
 / |
 pn*---->|
 \ tn|
 \ |
 g2\ |
 \ |
 \|
 * *
 p(n-1) p(n+1)

It should help you to understand the influence of the parameters on the
tangent vector tn. All parameters range from -1.0 to 1.0. The tension (T)
parameter just scales the length of tn. The continuity (C) parameter moves
the end point of tn on g3. The bias (B) parameter scales the lengths of g1
and g2. Our new formulas are:

g1 = (pn - p(n-1))*(1+B),
g2 = (p(n+1) - pn)*(1-B),
g3 = g2 - g1,
tangent case a: an = (g1 + g3*(0.5 + 0.5*C))*(1-T),
tangent case b: bn = (g1 + g3*(0.5 - 0.5*C))*(1-T).

For the incoming spline case a is valid, for the outgoing case b.

Start and end points
====================
The tangent vectors of the start and end points have to be calculated
differently. For the start pont it is:

b0 = ((p1 - p0)*1.5 - a1*0.5)*(1-T),

where a1 is the tangent (case a) of p1, which depends on the parameters of
the key k1. For the end point the formula is similar:

an = ((pn - p(n-1))*1.5 - b(n-1)*0.5)*(1-T).

The remaining case is if the track has only two keys.

Two key tracks

==============
If the track has only two keys, then the two tangents tn2 and tn1 for the
only two points p0 and p1 are

b0 = (p1-p0)*(1-T),
a1 = (p1-p0)*(1-T).

The tension parameter is taken from key k0 to calculate b0 and from k1 to
calculate a1.

Source example
==============
The following source comes from my 3DS file converter. It calculates the
tangent vector for a given key number. This way I could handle all
special cases in C++, while the assembler code in the intro only has to
calculate the Hermite spline formula. I defined a n-dimensional vector
class (tvec) with a copy constructor and the operators +, - and *. The key
class (tkey) contains the following fields:

 int frame;
 float tension, continuity, bias;
 tclass * d;

In this case the d (data) field points to a vector. The variable called
track is a collection (a class replacing an array) with the sub-field count
to indicate how many objects (in this case keys) are in the collection.
kn_1, kn and kn1 are pointers to a key. pn_1, pn and pn1 are pointers to a
vector. gett(an,5) returns a5, gett(bn,0) returns b0.

enum {an,bn,point};

tvec ttrack::getv(int sel, int n) {
 tkey* kn_1,* kn,* kn1;
 tvec* pn_1,* pn,* pn1;

 kn = (tkey *) track[n];
 pn = (tvec *) kn->d;

 if (sel == point) return *pn;

 if (n == 0) {
 //first key
 kn1 = (tkey *) track[1];
 pn1 = (tvec *) kn1->d;

 if (track.count == 2) {
 //2 keys
 return (*pn1 - *pn)*(1.0 - kn->tension);
 };
 if (mode != 3) {
 //first key, no loop
 return ((*pn1 - *pn)*1.5 - getv(an,1)*0.5)*(1.0 - kn->tension);

 } else {
 //first key, loop
 kn_1= (tkey *) track[track.count-2];
 };
 } else if (n == track.count-1) {
 //last key
 kn_1 = (tkey *) track[n-1];
 pn_1 = (tvec *) kn_1->d;

 if (track.count == 2) {
 //2 keys
 return (*pn - *pn_1)*(1.0 - kn->tension);
 };
 if (mode != 3) {
 //last key, no loop
 return ((*pn - *pn_1)*1.5 - getv(bn,n-1)*0.5)*(1.0 - kn->tension);
 } else {
 //last key, loop
 kn1 = (tkey *) track[1];
 };
 } else {
 //middle keys
 kn_1= (tkey *) track[n-1];
 kn1 = (tkey *) track[n+1];
 };
 pn_1= (tvec *) kn_1->d;
 pn1 = (tvec *) kn1->d;

 float f = (sel == an) ? 0.5 : -0.5;

 tvec g1 = (*pn - *pn_1)*(1.0 + kn->bias);
 tvec g2 = (*pn1 - *pn)*(1.0 - kn->bias);

 return (g1 + (g2-g1)*(0.5 + f*kn->continuity))*(1.0 - kn->tension);
};

Rotation track
==============
Now we come to the rotation track, which is more difficult to understand
and to code than the splines. In general, you have to perform some steps
to come from a rotation track to the interpolated rotation matrix. The
rotations in the rotation track are stored as relative rotations from one
key to the next with a rotation angle and a rotation axis. You have to
convert them to a quaternion and multiply each quaternion with the previous
one to get an absolute rotation information. Then you interpolate the
quaternions by the method described later. At the end you convert the
interpolated rotation to a matrix.

Quaternions
===========
A quaternion is a set of four numbers. For some operations it is best to

treat them as a 4D-vector. The first is the dot product to determine the
length. All quaternions which represent a rotation have the length 1, this
means they lie on the four dimensional unit sphere. The second is an
interpolation formula to find the shortest way from one quaternion to
another on the surface of the unit sphere. For other operations treat them
as a scalar and a 3D-vector. This is needed for the quaternion
multiplication and conversion from angle and vector. The scalar part is
called s and the vector part v. Therefore we have the following
representations:

q = [x1,x2,x3,x4] = [s,v] = [w,(x,y,z)].

Conversion angle/axis to quaternion
===================================
The first step you have to do is to convert the angle and axis to a
quaternion. The formula is

s = cos(angle/2.0),
v = axis * sin(angle/2.0).

Now you have to convert your rotation track from relative to absolute
representation. Just multiply the quaternions, beginning with the second,
like this:

Qn' = Q(n-1) x Qn,

where Q(n-1) is already absolute and 'x' is the quaternion multiplication

q1 x q2 = [s1,v1] x [s2,v2] = [(s1*s2 - v1*v2),(s1*v2 + s2*v1 + v1xv2)].

The 'v1*v2' term is the dot product of v1 and v2, the 'v1xv2' term is the
vector product. The first quaternion does not need to be converted since it
is the absolute initial rotation. Now you have a track consisting of
quaternions representing absolute rotations.

Linear interpolation
====================
Remember that the simplest way to interpolate a two dimensional position
track was done by drawing straight lines between the points. The formula
was:

Q(t) = P1*(t) + P2*(1-t).

Now we need the same thing for rotations. If you treat quaternions as
4D-vectors, all possible rotations lie on the four dimensional unit sphere.
To come from one point to another you have to follow an arc on the surface
of the sphere. This arc is the curve where the sphere intersects a plane
through the two points and the origin. This is the formula for the
Spherical Linear intERPolation (slerp):

slerp(q1,q2) = sin((1-t)*a)/sin(a) * q1 + sin(t*a)/sin(a) * q2,

where t is the local time parameter running from 0.0 to 1.0 and a is the
angle between q1 and q2. The angle is calculated with the standard dot
product formula

cos(a) = q1 * q2,

where q1 and q2 have the length 1. If the angle is too small, you can use a
normal linear interpolation to avoid a division by zero or wrong results.
The slerp function is very important, so you should understand these
examples:

slerp(q1,q2, 0.0) = q1,
slerp(q1,q2, 0.5) = a point half way from q1 to q2,
slerp(q1,q2, 1.0) = q2,
slerp(q1,q2,-1.0) = a point opposite to q2 relative to q1.

Splines on the sphere
=====================
Now we try to transfer all formulas from the spline section to this one.
With the slerp function we already can do the equivalent to taking a pencil
and a ruler and draw lines between points. But this is actually all we can
do on the surface of the four dimensional sphere. Luckily Bezier found a
method to draw splines only with a pencil and a ruler. The slerp function
acts as our ruler. How to do this we see later, first we look at the
formula of the Bezier spline. It depends on four points P1, P2 and C1, C2:

Q(t) = P1*(1-t)^3 + C1*3t*(1-t)^2 + C2*3t^2*(1-t) + P2*t^3.

It passes only through P1 and P2, C1 and C2 are control points. When we
compare it with the Hermite spline, we can find the following relationship:

P1h = P1b => P1b = P1h
R1h = (C1b-P1b)*3 => C1b = P1h+R1h/3
R2h = (P2b-C2b)*3 => C2b = P2h-R2h/3
P2h = P2b => P2b = P2h

Since we can only construct Bezier splines on the surface of the sphere we
have to convert the Hermite spline to a Bezier spline. Remember the
straight lines g1, g2, g3 and the tangent tn. They were

g1 = pn - p(n-1),
g2 = p(n+1) - pn,
g3 = g2 - g1,
tn = g1 + g3*0.5.

These were relative quantities. On the sphere everything has to be
absolute. Our new formulas become

g1 = slerp(qn,q(n-1),-1.0/3.0),
g2 = slerp(qn,q(n+1), 1.0/3.0),

g3 = slerp(g1,g2, 0.5),
control point case a: an = slerp(qn,g3,-1.0),
control point case b: bn = slerp(qn,g3, 1.0) = g3.

The new formula for g1 has a negative parameter, because the old g1 pointed
away from p(n-1).The new g3 corresponds to pn + tn/3, an is the control
point C2 for the incoming Bezier spline, bn is C1 for the outgoing one. bn
is opposite to an. You should be able to construct an and bn on a paper
now.

This is the drawing. Given points are marked with *, auxiliary points with
o. Lines show the slerp functions running from the start point to the
resulting point.

 g1
 o
 /|
 / |
 an o--* o g3=bn
 qn\
 \
 o
 g2

* *
q(n-1) q(n+1)

Parameters
==========
Now we introduce the parameters tension (T), continuity (C) and bias (B)
again. The formulas are:

g1 = slerp(pn,q(n-1),-(1+B)/3.0),
g2 = slerp(pn,q(n+1), (1-B)/3.0),

control point case a:
g3 = slerp(g1,g2,0.5 + 0.5*C),
an = slerp(pn,g3, (T-1)),

control point case b:
g3 = slerp(g1,g2,0.5 - 0.5*C),
bn = slerp(pn,g3,-(T-1)).

For the incoming spline case a is valid, for the outgoing case b.

Start and end points
====================
Now we want to calculate the control points an and bn at the start and end

points. Here you have to decide if you want a version which is the
equivalent to the other tracks or one which is compatible with Autodesk 3D
Studio 4.0. First the equivalent version. The formula was

b0 = ((p1 - p0)*1.5 - a1*0.5)*(1-T),

for the tangent vector of the start point, which needs the tangent (case a)
of the next point t(n+1). The formula for the first control point b0 of the
quaternion curve is

b0 = slerp(qn,a1,(1-T)*0.5),

which I found graphically. It also needs the control point a1 which depends
on the parameters of k1. The formula for the last control point is similar:

an = slerp(qn,b(n-1),(1-T)*0.5).

After some time comparing values I found that 3DS uses the following
formulas:

b0 = slerp(q0,q1 ,(1-T)*(1+C*B)/3.0),
an = slerp(qn,q(n-1),(1-T)*(1-C*B)/3.0).

Two key tracks
==============
My version for the formulas:

b0 = slerp(q0,q1,(1-T)/3.0),
a1 = slerp(q1,q0,(1-T)/3.0).

The 3DS version is like the start and end points for tracks with more keys:

b0 = slerp(q0,q1,(1-T)*(1+C*B)/3.0),
a1 = slerp(q1,q0,(1-T)*(1-C*B)/3.0).

Source example
==============
This time the data field in the key class holds a pointer to a quaternion.
qn_1, qn and qn1 are pointers to a quaternion. The quaternion class has a
slerp-method. This version is still not 100% compatible, small differences
occur when the bias parameters are other than 0. But I think there is no
real bug in it. The commented code lines are my versions of the start and
end point calculatoins.

tquaternion ttrack::getq(int sel, int n) {
 tkey* kn_1,* kn,* kn1;
 tquaternion* qn_1,* qn,* qn1;

 kn = (tkey *) track[n];
 qn = (tquaternion *) kn->d;

 if (sel == point) return *qn;

 if (n == 0) {
 //first key
 kn1 = (tkey *) track[1];
 qn1 = (tquaternion *) kn1->d;

 //2 keys
// if (track.count == 2) return qn->slerp(*qn1,(1.0 - kn->tension)/3.0);

 if (mode != 3 || track.count <= 2) {
 //first key, no loop
// return qn->slerp(getq(an,1),(1.0 - kn->tension)*0.5);
 return qn->slerp(*qn1,(1.0 - kn->tension)*(1.0 + kn->continuity*kn-
>bias)/3.0);
 } else {
 //first key, loop
 kn_1= (tkey *) track[track.count-2];
 };
 } else if (n == track.count-1) {
 //last key
 kn_1 = (tkey *) track[n-1];
 qn_1 = (tquaternion *) kn_1->d;

 //2 keys
// if (track.count == 2) return qn->slerp(*qn_1,(1.0 - kn->tension)/3.0);

 if (mode != 3 || track.count <= 2) {
 //last key, no loop
// return qn->slerp(getq(bn,n-1),(1.0 - kn->tension)*0.5);
 return qn->slerp(*qn_1,(1.0 - kn->tension)*(1.0 - kn->continuity*kn-
>bias)/3.0);
 } else {
 //last key, loop
 kn1 = (tkey *) track[1];
 };
 } else {
 //middle keys
 kn_1= (tkey *) track[n-1];
 kn1 = (tkey *) track[n+1];
 };
 qn_1= (tquaternion *) kn_1->d;
 qn1 = (tquaternion *) kn1->d;

 float f = (sel == an) ? 1.0 : -1.0;

 tquaternion g1 = qn->slerp(*qn_1,-(1.0 + kn->bias)/3.0);
 tquaternion g2 = qn->slerp(*qn1 , (1.0 - kn->bias)/3.0);

 return qn->slerp(g1.slerp(g2,0.5 + f*0.5*kn->continuity),f*(kn->tension -
1.0));

};

Interpolation
=============
This time having the control points does not mean we have everything we
need. We finally have to draw a spline on the surface of the four
dimensional sphere. This can be done using the slerp function again,
because you can construct Bezier splines with a pencil and a ruler. We just
need some temporary quaternions to do this:

q0 = slerp(qn,bn,t),
q1 = slerp(bn,a(n+1),t),
q2 = slerp(a(n+1),q(n+1),t),

q0 = slerp(q0,q1,t),
q1 = slerp(q1,q2,t),

q0 = slerp(q0,q1,t).

Read in [2] more about this. q0 is now your final quaternion. Now you have
to convert it to a matrix. If q0 = [w,(x,y,z)] then the rotation matrix M
is:

 (1-2yy-2zz 2xy+2wz 2xz-2wy)
M = (2xy-2wz 1-2xx-2zz 2yz+2wx)
 (2xz+2wy 2yz-2wx 1-2xx-2yy)

Debugging
=========
Since you can't see if everything works fine, you should convert the
interpolated quaternions back to a angle/axis representation to compare
them with 3DS. If you have defined one key at frame 0 and the next at frame
10, then select key 5 and show the key info of the object. 3DS will then
show the interpolated values for frame 5. If you interpolate qn and q(n+1),
the resulting quaternion is q0. To convert it back, simply calculate

q = qn^(-1) x q0,

where 'x' is the quaternion multiplication and qn^(-1) is the inverse of
qn. If qn = [s,v], then

qn^(-1) = [s,-v].

This is the simplified formula for unit quaternions. Now convert the
quaternion q to angle/axis:

angle = 2.0*arccos(s),
axis = v/sqrt(1-s^2) = v/sin(angle/2.0).

You have to avoid divisions by zero of course.

Conclusion
==========
A complete track system is not very easy to implement. I still have not
found a formula for the ease to and ease from parameters yet. If you know
them or have found any errors in this text, please mail me.

